\(\int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [1309]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 274 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \left (5 a^3 B-15 a b^2 B+15 a^2 b (A-C)-b^3 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (9 a^2 b B+b^3 B+3 a b^2 (3 A+C)+a^3 (A+3 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b \left (15 A b^2+35 a b B+24 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (5 a A-5 b B-9 a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 (5 b B+6 a C) (b+a \cos (c+d x))^2 \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (b+a \cos (c+d x))^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/5*(5*B*a^3-15*B*a*b^2+15*a^2*b*(A-C)-b^3*(5*A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
E(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(9*B*a^2*b+B*b^3+3*a*b^2*(3*A+C)+a^3*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)
/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/15*(5*B*b+6*C*a)*(b+a*cos(d*x+c))^2*sin(d*x+c)/d
/cos(d*x+c)^(3/2)+2/5*C*(b+a*cos(d*x+c))^3*sin(d*x+c)/d/cos(d*x+c)^(5/2)+2/15*b*(15*A*b^2+35*B*a*b+24*C*a^2+9*
C*b^2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)+2/15*a^2*(5*A*a-5*B*b-9*C*a)*sin(d*x+c)*cos(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {4197, 3126, 3110, 3102, 2827, 2720, 2719} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 b \sin (c+d x) \left (24 a^2 C+35 a b B+15 A b^2+9 b^2 C\right )}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 \sin (c+d x) \sqrt {\cos (c+d x)} (5 a A-9 a C-5 b B)}{15 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (a^3 (A+3 C)+9 a^2 b B+3 a b^2 (3 A+C)+b^3 B\right )}{3 d}+\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (5 a^3 B+15 a^2 b (A-C)-15 a b^2 B-b^3 (5 A+3 C)\right )}{5 d}+\frac {2 (6 a C+5 b B) \sin (c+d x) (a \cos (c+d x)+b)^2}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C \sin (c+d x) (a \cos (c+d x)+b)^3}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*(5*a^3*B - 15*a*b^2*B + 15*a^2*b*(A - C) - b^3*(5*A + 3*C))*EllipticE[(c + d*x)/2, 2])/(5*d) + (2*(9*a^2*b*
B + b^3*B + 3*a*b^2*(3*A + C) + a^3*(A + 3*C))*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*b*(15*A*b^2 + 35*a*b*B +
24*a^2*C + 9*b^2*C)*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]) + (2*a^2*(5*a*A - 5*b*B - 9*a*C)*Sqrt[Cos[c + d*x]
]*Sin[c + d*x])/(15*d) + (2*(5*b*B + 6*a*C)*(b + a*Cos[c + d*x])^2*Sin[c + d*x])/(15*d*Cos[c + d*x]^(3/2)) + (
2*C*(b + a*Cos[c + d*x])^3*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 3126

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)
*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b*
c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 4197

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(b+a \cos (c+d x))^3 \left (C+B \cos (c+d x)+A \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 C (b+a \cos (c+d x))^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2}{5} \int \frac {(b+a \cos (c+d x))^2 \left (\frac {1}{2} (5 b B+6 a C)+\frac {1}{2} (5 A b+5 a B+3 b C) \cos (c+d x)+\frac {1}{2} a (5 A-3 C) \cos ^2(c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 (5 b B+6 a C) (b+a \cos (c+d x))^2 \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (b+a \cos (c+d x))^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4}{15} \int \frac {(b+a \cos (c+d x)) \left (\frac {1}{4} \left (15 A b^2+35 a b B+24 a^2 C+9 b^2 C\right )+\frac {1}{4} \left (15 a^2 B+5 b^2 B+6 a b (5 A+C)\right ) \cos (c+d x)+\frac {3}{4} a (5 a A-5 b B-9 a C) \cos ^2(c+d x)\right )}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 b \left (15 A b^2+35 a b B+24 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 (5 b B+6 a C) (b+a \cos (c+d x))^2 \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (b+a \cos (c+d x))^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {8}{15} \int \frac {\frac {1}{8} \left (-50 a^2 b B-5 b^3 B-24 a^3 C-15 a b^2 (3 A+C)\right )-\frac {3}{8} \left (5 a^3 B-15 a b^2 B+15 a^2 b (A-C)-b^3 (5 A+3 C)\right ) \cos (c+d x)-\frac {3}{8} a^2 (5 a A-5 b B-9 a C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 b \left (15 A b^2+35 a b B+24 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (5 a A-5 b B-9 a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 (5 b B+6 a C) (b+a \cos (c+d x))^2 \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (b+a \cos (c+d x))^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {16}{45} \int \frac {-\frac {15}{16} \left (9 a^2 b B+b^3 B+3 a b^2 (3 A+C)+a^3 (A+3 C)\right )-\frac {9}{16} \left (5 a^3 B-15 a b^2 B+15 a^2 b (A-C)-b^3 (5 A+3 C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 b \left (15 A b^2+35 a b B+24 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (5 a A-5 b B-9 a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 (5 b B+6 a C) (b+a \cos (c+d x))^2 \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (b+a \cos (c+d x))^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}-\frac {1}{3} \left (-9 a^2 b B-b^3 B-3 a b^2 (3 A+C)-a^3 (A+3 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{5} \left (-5 a^3 B+15 a b^2 B-15 a^2 b (A-C)+b^3 (5 A+3 C)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 \left (5 a^3 B-15 a b^2 B+15 a^2 b (A-C)-b^3 (5 A+3 C)\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (9 a^2 b B+b^3 B+3 a b^2 (3 A+C)+a^3 (A+3 C)\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b \left (15 A b^2+35 a b B+24 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a^2 (5 a A-5 b B-9 a C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 (5 b B+6 a C) (b+a \cos (c+d x))^2 \sin (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 C (b+a \cos (c+d x))^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 17.00 (sec) , antiderivative size = 3163, normalized size of antiderivative = 11.54 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Result too large to show} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^(11/2)*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-2*(15*a^2*A*b - 10*A*b^
3 + 5*a^3*B - 30*a*b^2*B - 30*a^2*b*C - 6*b^3*C + 15*a^2*A*b*Cos[2*c] + 5*a^3*B*Cos[2*c])*Csc[c]*Sec[c])/(5*d)
 + (4*a^3*A*Cos[d*x]*Sin[c])/(3*d) + (4*a^3*A*Cos[c]*Sin[d*x])/(3*d) + (4*b^3*C*Sec[c]*Sec[c + d*x]^3*Sin[d*x]
)/(5*d) + (4*Sec[c]*Sec[c + d*x]^2*(3*b^3*C*Sin[c] + 5*b^3*B*Sin[d*x] + 15*a*b^2*C*Sin[d*x]))/(15*d) + (4*Sec[
c]*Sec[c + d*x]*(5*b^3*B*Sin[c] + 15*a*b^2*C*Sin[c] + 15*A*b^3*Sin[d*x] + 45*a*b^2*B*Sin[d*x] + 45*a^2*b*C*Sin
[d*x] + 9*b^3*C*Sin[d*x]))/(15*d)))/((b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x]))
 - (4*a^3*A*Cos[c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a + b*Sec
[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c
]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(b
 + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (12*a*A*b^2*Cos[c
 + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])^3*(A +
 B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[
1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(b + a*Cos[c + d*x])^
3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (12*a^2*b*B*Cos[c + d*x]^5*Csc[c]*Hy
pergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C
*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c
]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Co
s[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*b^3*B*Cos[c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4,
1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d
*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot
[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2
*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (4*a^3*C*Cos[c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x
 - ArcTan[Cot[c]]]^2]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]
*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin
[d*x - ArcTan[Cot[c]]]])/(d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 +
Cot[c]^2]) - (4*a*b^2*C*Cos[c + d*x]^5*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2
]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x -
ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]
]]])/(d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]) - (6*a^2*
A*b*Cos[c + d*x]^5*Csc[c]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{
-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[
Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1
 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]
*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(b
+ a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) + (2*A*b^3*Cos[c + d*x]^5*Csc[c]*(a + b
*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + Ar
cTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + Arc
Tan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcT
an[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 +
 Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2
*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) - (2*a^3*B*Cos[c + d*x]^5*Csc[c]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c +
d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTa
n[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*
x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan
[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x
+ ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*
d*x])) + (6*a*b^2*B*Cos[c + d*x]^5*Csc[c]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((Hyp
ergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - C
os[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + T
an[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x +
 ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan
[c]^2]]))/(d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) + (6*a^2*b*C*Cos[c + d*
x]^5*Csc[c]*(a + b*Sec[c + d*x])^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {
3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt
[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2])
- ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[
c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(d*(b + a*Cos[c + d*
x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])) + (6*b^3*C*Cos[c + d*x]^5*Csc[c]*(a + b*Sec[c + d*x])
^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^
2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*
Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Ta
n[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sq
rt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d*(b + a*Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d
*x] + A*Cos[2*c + 2*d*x]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1391\) vs. \(2(306)=612\).

Time = 4.24 (sec) , antiderivative size = 1392, normalized size of antiderivative = 5.08

method result size
default \(\text {Expression too large to display}\) \(1392\)

[In]

int(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)+2*a^3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-2*B*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2
*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*A*
a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*a*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c
)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*B*a^
2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+4/3*A*a^3*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-sin(1/2*d
*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1
/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1
/2*c)^2)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2/5*C*b^3/(8*sin(1/2*d*x+1/2*c)^6-12*sin(
1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d
*x+1/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x
+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)
-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2))*(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(-4*A*a^3+6*A*a^2*b+2*B*a^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*c
os(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c
),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*b^2*(B*b+3*C*a)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
)))+2*b*(A*b^2+3*B*a*b+3*C*a^2)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin
(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/
d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.39 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {5 \, \sqrt {2} {\left (i \, {\left (A + 3 \, C\right )} a^{3} + 9 i \, B a^{2} b + 3 i \, {\left (3 \, A + C\right )} a b^{2} + i \, B b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, {\left (A + 3 \, C\right )} a^{3} - 9 i \, B a^{2} b - 3 i \, {\left (3 \, A + C\right )} a b^{2} - i \, B b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (-5 i \, B a^{3} - 15 i \, {\left (A - C\right )} a^{2} b + 15 i \, B a b^{2} + i \, {\left (5 \, A + 3 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (5 i \, B a^{3} + 15 i \, {\left (A - C\right )} a^{2} b - 15 i \, B a b^{2} - i \, {\left (5 \, A + 3 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - 2 \, {\left (5 \, A a^{3} \cos \left (d x + c\right )^{3} + 3 \, C b^{3} + 3 \, {\left (15 \, C a^{2} b + 15 \, B a b^{2} + {\left (5 \, A + 3 \, C\right )} b^{3}\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (3 \, C a b^{2} + B b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

-1/15*(5*sqrt(2)*(I*(A + 3*C)*a^3 + 9*I*B*a^2*b + 3*I*(3*A + C)*a*b^2 + I*B*b^3)*cos(d*x + c)^3*weierstrassPIn
verse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-I*(A + 3*C)*a^3 - 9*I*B*a^2*b - 3*I*(3*A + C)*a*b^2
- I*B*b^3)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*sqrt(2)*(-5*I*B*a^3 -
15*I*(A - C)*a^2*b + 15*I*B*a*b^2 + I*(5*A + 3*C)*b^3)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInver
se(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*sqrt(2)*(5*I*B*a^3 + 15*I*(A - C)*a^2*b - 15*I*B*a*b^2 - I*(5*A
+ 3*C)*b^3)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) -
 2*(5*A*a^3*cos(d*x + c)^3 + 3*C*b^3 + 3*(15*C*a^2*b + 15*B*a*b^2 + (5*A + 3*C)*b^3)*cos(d*x + c)^2 + 5*(3*C*a
*b^2 + B*b^3)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*sec(d*x+c))**3*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^3*cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 22.47 (sec) , antiderivative size = 414, normalized size of antiderivative = 1.51 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,\left (B\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,a^3+3\,B\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\,a^2\right )}{d}+\frac {A\,a^3\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,C\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a^2\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,A\,a\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,b^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,b^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,b^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,B\,a\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {6\,C\,a^2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))^3*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

(2*(B*a^3*ellipticE(c/2 + (d*x)/2, 2) + 3*B*a^2*b*ellipticF(c/2 + (d*x)/2, 2)))/d + (A*a^3*((2*cos(c + d*x)^(1
/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x)/2, 2))/3))/d + (2*C*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*A*a
^2*b*ellipticE(c/2 + (d*x)/2, 2))/d + (6*A*a*b^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*b^3*sin(c + d*x)*hyperg
eom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*b^3*sin(c + d*x)*h
ypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*b^3*sin(c +
 d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2)) + (6*B*a*b
^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (
6*C*a^2*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/
2)) + (2*C*a*b^2*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(3/2)*(sin(c + d*x)
^2)^(1/2))